Wednesday, March 28, 2012

Big Data, R and HANA: Analyze 200 Million Data Points and Later Visualize Using Google Maps

Technologies: SAP HANA, R, HTML5, D3, Google Maps, JQuery and JSON

For this fun exercise, I analyzed more than 200 million data points using SAP HANA and R and then brought in the aggregated results in HTML5 using D3, JSON and Google Maps APIs.  The 2008 airlines data is from the data expo and I have been using this entire data set (123 million rows and 29 columns) for quite sometime. See my other blogs

The results look beautiful:



Each airport icon is clickable and when clicked displays an info-window describing the key stats for the selected airport:


I then used D3 to display the aggregated result set in the modal window (light box):



Unfortunately, I can't provide the live example due to the restrictions put in by Google Maps APIs and I am approaching my free API limits.

Fun fact:  The Atlanta airport was the largest airport in 2008 on many dimensions: Total Flights Departed, Total Miles Flew, Total Destinations.  It also experienced lower average departure delay in 2008 than Chicago O'Hare. I always thought Chicago O'Hare is the largest US airport.

As always, I just needed 6 lines of R code including two lines of code to write data in JSON and CSV files:

################################################################################
airports.2008.hp.summary <- airports.2008.hp[major.airports,     
    list(AvgDepDelay=round(mean(DepDelay, na.rm=TRUE), digits=2),
    TotalMiles=prettyNum(sum(Distance, na.rm=TRUE), big.mark=","),
    TotalFlights=length(Month),
    TotalDestinations=length(unique(Dest)),
    URL=paste("http://www.fly", Origin, ".com",sep="")), 
                    by=list(Origin)][order(-TotalFlights)]
setkey(airports.2008.hp.summary, Origin)
#merge the two data tables
airports.2008.hp.summary <- major.airports[airports.2008.hp.summary, 
                                                     list(Airport=airport, 
                                                          AvgDepDelay, TotalMiles, TotalFlights, TotalDestinations, 
                                                          Address=paste(airport, city, state, sep=", "), 
                                                          Lat=lat, Lng=long, URL)][order(-TotalFlights)]


airports.2008.hp.summary.json <- getRowWiseJson(airports.2008.hp.summary)
writeLines(airports.2008.hp.summary.json, "airports.2008.hp.summary.json")                 
write.csv(airports.2008.hp.summary, "airports.2008.hp.summary.csv", row.names=FALSE)
##############################################################################

Happy Coding and remember the possibilities are endless!

No comments:

Post a Comment